Chapter One

DATA STORAGE

Chapter Summary

This chapter presents the rudiments of data storage within digital computers. It introduces the basics of digital circuitry and how a simple flip-flop can be used to store a single bit. It then discusses addressable memory cells and mass storage systems (magnetic disk, compact disks, and flash memory). Having established this background, the chapter discusses how information (text, numeric values, images, and sound) are encoded as bit patterns. There are two optional sections, first in a brief introduction to Python highlighting the means by which a programming languages hides the details of memory represention. The second delves more deeply into data storage topics by presenting the problems of overflow errors, truncation errors, error detection and correction techniques, and data compression.

Comments

1. Perhaps the most important comment I can make about this chapter (and the next one as well) is to explain its role in the chapters that follow. This involves the distinction between exposing students to a subject and requiring them to master the material—a distinction that is at the heart of the spirit in which the entire text was written. The intention of this chapter is to provide a realistic exposure to a very important area of computer science. It is not necessary for the students to master the material. All that is needed from this chapter in the remaining part of the book are the remnants that remain from a brief exposure to the issues of data storage. Even if the course you teach requires a mastery of these details or the development of manipulation skills, I encourage you to avoid emphasizing bit manipulations and representation conversions. In particular, I urge you to avoid becoming bogged down in the details of converting between base ten and binary notation. I can’t think of anything that would be more boring for the students. (I apologize for stating my opinion.)
2. The “required” sections in this chapter cover the composition of main memory (as a background for machine architecture in chapter 2 and data structures in chapter 8), the physical issues of external data storage systems (in preparation for the subjects of file and database systems in chapter 9), and the rudiments of data encoding (that serves as a background for the subject of data types and high-level language declaration statements in chapter 6). The optional sections explore the issues of error handling, including transmission error detection and correction as well as the problem of truncation and overflow errors resulting from numeric coding systems.

3. As mentioned in the preface of the text, there are several themes that run throughout the text, one of which is the role of abstraction. I like to include this theme in my lecture in which I introduce flip-flops. I end up with both flip-flop diagrams from the text on the board, and I emphasize that they represent two ways of accomplishing the same task. I then draw a rectangle around each diagram and erase the circuits within the rectangles leaving only the inputs, outputs, and rectangles showing. At this point the two look identical. I think that this creates a strong visual image that drives home the distinction between an abstract tool’s interface with the outside world and the internal details of the tool.

This is a specific example of teaching several topics at the same time—in this case, the concepts of abstraction and encapsulation are taught in the context of teaching digital circuits.

4. Don’t forget about the circuits in Appendix B. I used to have students who continued to record an extra bit in the answer to a two’s complement addition problem when a carry occurred—even though I had explained that all values in a two’s complement system were represented with the same number of bits. Once I started presenting the addition circuit in Appendix B, this problem disappeared. It gave the students a concrete understanding that the carry is thrown away. (Of course, in a later course computing students will learn that it really isn’t thrown away but saved as the "carry bit" for potential use in the future, but for now I ignore this.) I have also found that a good exercise is to ask students to extend the circuit in Figure B.3 so that it produces an additional output that indicates whether an overflow has occurred. For example, the output could be 1 in the case of an overflow and 0 otherwise.

5. For most students, seeing the reality of the things they are told is a meaningful experience. For this reason I often find it advantageous to demonstrate the distinction between numeric and character data using a spreadsheet. I like to show them how the manipulation of large numbers can lead to errors.

7. I have found that students respond well to hearing about CD and DVD storage systems, how sound is encoded, and image representation systems such as GIF and JPEG. I have often used these topics as a way of getting non-majors interested in technical issues.

8. For students not majoring in computer science, topics such as two's complement and floating-point notation can get a bit dry. The main point for them to understand is that when information is encoded, some information usually gets lost. This point can be made just as well using audio and video, which are contexts that seem to be more interesting to the non-majors.

Answers to Chapter Review Problems

1. With a 1 on the upper input and a 0 on the lower input, all circuits will produce an output 0. If instead a 0 is on the upper input and 1 is on the lower input, circuits b and c will produce an output 1, and circuit a will still produce a 0.
2.
a. The entire circuit is equivalent to a single AND gate.
b. The entire circuit is equivalent to an Exclusive OR gate.
3. a. After the third pulse, this circuit will produce an output of 1 and 1. After the fourth pulse, both flip-flops are flipped back to a 0 state so the circuit will again produce an output of 0 and 0. It is interesting to note that this circuitry forms a binary counter that will repeatedly count from 00 to 11. Thus, this circuit forms an abstract tool that can be used as a building block in other circuits. Additional flip-flops can be added to count through a larger range of numbers.
b. A 1 will be sent on Output B on the 2nd, 6th, 10th … pulses of the clock. Likewise, a 1 will be sent to Output C on the 3rd, 7th, 11th … pulses of the clock. A 1 will not be sent to any output on the 4th, 8th, 12th … pulses of the clock. As we move forward into the next chapter, a circuit similar to this can be used to drive the machine cycle (composed of fetch, decode, and execute). Output A would be connected to the input that activates the fetch circuitry. Likewise Output B and Output C would be connected to the decode and execute circuits respectively.
4. This is a flip-flop that is triggered by 0s rather than 1s. That is, temporarily changing the upper input to 0 will establish an output of 1, whereas temporarily changing the lower input to 0 will establish an output of 0. To obtain an equivalent circuit using NAND gates, simply replace each AND-NOT gate pair with a NAND gate.

5.
Address Contents

00
02

01
53

02
01

03
53

6. 256 using two hexadecimal digits (16 bits) , 65536 using four hexadecimal digits (32 bits).

 7. a. 100010101001 b. 110111001011 c. 111011110011 d. 101000000001 e. 110010011001
8. a. 0 b. 0 c. 1 d. 0

 9. a. B4B4B b. 1E1 c. FEDB
10. The image consists of 512 x 512 = 2,62,144 pixels and therefore 1 x 2,62,144 = 2,62,144 bits, or about 32KB. This means that about 16,000 images could be stored in the 500MB camera storage system.

11. 2,359,296. (Each pixel would require three memory cells.)
12. a. In disk systems that use zoned-bit recording, the outermost tracks on the disk contain more number of sectors than the inner ones, thus efficiently utilizing the available disk space.

b. Seek time is the time required to move the read/write heads from one track to another whereas access time is the sum of seek time and rotation delay.
13. There are 10GB of material to be backed up. Each DVD can hold no more than 4.7GB. Thus, it will require at least 3 DVDs to store all the material. That seems to be quite practical. On the other hand, BDs have capacities of about five times than that of DVDs, meaning that only one BD would be required.

14. There would be about 2,000 integers on two pages requiring four bytes for each integer. So both pages would collectively require about 8,000 bytes or 16 sectors of size 512 bytes.

15. The document would require about 0.8MB if two byte Unicode characters are used.
16. This happens because in the case of zone-bit recording, the amount of data passing a read/write head in a single disk rotation is greater for tracks in an outer zone than for an inner zone.
17. About 19 milliseconds.
18. Only 400KB!
19. Computer Science!
20. No, the first one is Computer and the other one is Compuser.
21. a. 01001001

01110011

00100000

00110000

00100000

01100010

01111001

01110100

01100101

00100000

00111100

00110111

00100000

01100010

01101001

01110100

01110011

00111111

b.

01011001

01100101

01110011

00101100

00100000

01100001

00100000

01100010

01111001

01110100

01100101

00100000

01100011

01101111

01101110

01110100

01100001

01101001

01101110

01110011

00100000

00110111

00100000

01100010

01101001

01110100

01110011

00100001

22.497320302062797465203C3720626974733F
5965732C2061206279746520636F6E7461696E732037206269747321

23. 14, 15, 16, 17, 18, 19, 1A, 1B
 24. a. 001100000010111100101111

 b. 11111111

25. They are the powers of two. 1 10 100 1000 10000 100000

26. Binary

base 10 representation

a.

00001010

10

b.

00010100

20

c.

00011110

30

d.

00101000

40

e.

00110010

50

f.

00111100

60

g.

01000110

70

h.

01100101

101

i.

11001010

202

j.

0000000100101111
303

k.

0000000110010100
404

l.

0000000111111001
505

 27. a. 01101110 b. 01100011 c. 01001000 d. 01010001 e. 00100100
28. a. 1 b. +6 c. +24 d. −27 e. −11
29. a. 00100 b. 10000 c. 11010 d. 01000 e. 11001
30. a. 21 b. 42 c. 54 d. 27 e. 57
 31. a. 11100101 b. 00000011 c. 00010101 d. 00001000 e. 11101110
32. a. 01101 b. 00000 c. 10000 (incorrect) d. 10001 e. 11110
 f. 10011 (incorrect) g. 11110 h. 01101 i. 10000 (incorrect) j. 11111

33. a.

 5 00101
 + 1 becomes + 00001
 00110 which represents 6
b.

 5 00101 00101
 - 1 becomes - 00001 which converts to + 11111
 00100 which represents 4
c.
 12 01100 01100

 - 5 becomes - 00101 which converts to + 11011
 00111 which represents 7
d.

 8 01000 01000

 - 7 becomes - 00111 which converts to + 11001
 00001 which represents 1

e.

 12 01100

 + 5 becomes + 00101
 10001 which represents -15 (overflow)

f.

 5 00101 00101

 - 11 becomes - 01011 which converts to + 10101
 11010 which represents -6

34. a. 3 3/4 b. 4 5/16 c. 13/16 d. 1 e. 2 1/4
35. a. 101.11 b. 1111.1111 c. 101.011 d. 1.01 e. 110.101

36. a. 1 1/8 b. -1/2 c. -3/16 d. 9/32

37. a. 11111111 b. 01001000 c. 11101111

 d. 00101110 e. 00011111 (truncation)

38. 00111100, 01000110, and 01010011

39. The best approximation of the square root of 2 is 1 3/8 represented as 01011011. The square of this value when represented in floating-point format is 01011111, which is the representation of 1 7/8.

40. The value one-eighth, which would be represented as 00101000.

41. Since the value one-tenth cannot be represented accurately, such recordings would suffer from truncation errors.

42. a. The value is either eleven or negative five.

 b. A value represented in two's complement notation can be changed to excess notation by changing the high-order bit, and vice versa.

43. The value is two; the patterns are excess, floating-point , and two's complement, respectively.

44. b would require too many significant digits. c would require too large of an exponent. d would require too many significant digits.

45. When using binary notation, the largest value that could be represented would change from 15 to 63. When using two's complement notation the largest value that could be represented would change from 7 to 31.

46. 4FFFFF

47. 1123221343435

48. yyxy xx yyxy xyx xx xyx

49. Starting with the first entries, they would be x, y, space, xxy, yyx, and xxyy.

50. Not a chance. MPEG requires transfer rates of 40 Mbps.

51. a.

D
o
e
s

</inst>1

0
0

001000010
001101111
001100101
101110011
100100000
100110001
000110000
000110000

/

5

=

2

100100000
100101111
100100000
000110101
100100000
100111101 100100000 100110010

0
?

000110000 000111111
b.

T
h
e

t
o
t
a

101010100
101101000
001100101
100100000
001110100
001101111
001110100
101100001

l

c
o
s
t

i

101101100
100100000
001100011
001101111
101110011
001110100
100100000
001101001

s

$
7
.
2

5
.

101110011
100100000
100100100
100110111
000101110
100110010
000110101
000101110
52. The underlined strings definitely contain errors.

11001 11011 10110 00000 11111 10001 10101 00100 01110

53. The code would have a Hamming distance of 3. Thus, by using it, one could detect up to 2 errors per character and correct up to 1 error per character.

54. a. HE b. FED c. DEAD d. CABBAGE e. CAFE

55. Answers will vary as the exchange rates change daily.

56. Answers will vary depending on the currency selected.

57. This is an interactive exercise, results will depend on the browser.

58. A change to the dollar amount would need to be made in each of the expressions.
59.

no_B = 123234234

no_KB = no_B / 1024
no_MB = no_KB / 1024
no_GB = no_MB / 1024
no_TB = no_TB / 1024
print(str(no_B) + ' B')

print(str(no_KB) + ' KB')

print(str(no_MB) + ' MB')

print(str(no_GB) + ' GB')

print(str(no_TB) + ' TB')

print(str(no_KB) + ' KB')

print(str(no_KB) + ' KB')

no_TB = 1.123

no_GB = no_TB * 1024

no_MB = no_GB * 1024

no_KB = no_MB * 1024

no_B = no_KB * 1024

print(str(no_B) + ' B')

print(str(no_KB) + ' KB')

print(str(no_MB) + ' MB')

print(str(no_GB) + ' GB')

print(str(no_TB) + ' TB')

print(str(no_KB) + ' KB')

print(str(no_KB) + ' KB')

60.

mins = 50

secs = 23

tot_secs = mins * 60 + secs

samples_per_sec = 44100
bytes_per_sample = 2
tot_bytes = tot_secs * samples_per_sec * bytes_per_sample
print(tot_bytes)

61. ‘**’ should be ‘*’ and ‘PRINT’ should be ‘print’

7

